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THE NON CANDIDATE CONSTRAINT METHOD

FOR REDUCING THE SIZE OF A LINEAR PROGRAM

by

Awanti P, Sethi and Gerald L. Thompson

J ABSTRACT

A non candidate constraint in a linear program is one which never
contains a pivot element during the course of solving the problem. Dis-
covering non candidate constraints is computationally costly since their
discovery, in general, depends on the actual sequence of pivots used. Know-
ing which constraints are non candidate is of great computational benefit since
they need not be kept in updated form. Our experience indicates that from
50 to 80 percent of the constraints in randomly problems are non candidates
at least part of the time.

In this paper we present a "learning® approach to the identification of
non candidate constraints. At each iteration we determine which constraints
can potentially be pivotal; these are candidate constraints and all others
are non candidate constraints on that step. On proceeding with the simplex
method we update only the candidate comstraints. If a non candidate constraint
becomes candidate on a later step, we update it and add it to the candidate
list.

Although the constant checking of constraints to see whether they are
changing from being candidate to non candidate is computationally costly, we
obtain the computational benefit of having to keep in updated form a much
smaller tableau.

The net benefit of using this strategy is positive and results in a 25
to 50 percent reduction in total computation time. This paper describes the
method in detail and gives computational results of testing it on a series of

N

randomly generated problems.
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THE NON CANDIDATE CONSTRAINT METHOD

FOR REDUCING THE SIZE OF A LINEAR PROGRAM

O

by

Awanti P. Sethi and Gerald L. Thompson

: 1. Introduction.
“ Thompson, Tonge, and Zionts [4,6] defined a redundant constraint in
a linear programming problem as one which could be dropped without changing

§ the primal constraint set. Most linear programs have some redundant constraints,
“ and it would be desirable to be able to identify them, However, the discovery
of redundant constraints is computationally extremely costly.

A much weaker concept is that of a non~candidate comnstraint, to be defined
precisely in Section 2. Intuitively a permanently non-candidate constraint is

one which never becomes pivotal, that is, never contains a pivot element, during

the course of solving a given linear program. Such constraints may, but need
not, be redundant in the strong sense of [4]. But they are never used during the
course of solving a problem, so that keeping them in updated form is of no value.

The discovery of permanently non candidate comstraints is computationally

even more difficult than the discovery of redundant constraints, since, in

RS0 TR A T,

general, they depend on the choice of a specific sequence of pivots. However,

»-

we have found that from 50 to 80 percent of the constraints in randomly generated

-

problems are sometimes non candidate constraints, see Section 4, so that their dis-

covery can be of great computational benefit.

i T LR

In this paper we present a "learning" approach to the identification of
non candidate constraints. At each iteration we determine which constraints can
potentially be pivotal; these are the candidate constraints; all others are non {

candidate constraints on that step. In proceeding with the simplex iterations




we update only candidate constraints, on the assumption that non candidate con-

straints on that step won't become candidates later. 1In case an error is made,
and a previously non candidate becomes a candidate constraint on a later itera-
tion, we update it, and add it to the candidate list.

Although the comnstant checking of constraints to see if they are changing
from being candidate to non candidate constraints or vice versa is costly, there
is the computational benefit of having a much smaller tableau to update at each
pivot. The net benefit of using this strategy is pogsitive and results in 25-50

percent reduction in total computation time, see Sectiom 4.

2. Basis for the Method.

The non candidate constraint method is merely a modification of the
standard simplex method, no new theoretical results are needed to establish the
correctness of the approach. In order to explain it we set up some standard
linear programming terminology.

Consider a linear programming problem stated form

Maximize {z = cx)}
Subject to Ax = b 1)

x>0

where A 1is mxn, b 1is mxl, ¢ 1is 1lxn, and x is nxl. We assume slack
variables have been included in the definition of A, and that the problem has
been transformed (by well-known techniques) so that b > 0. The simplex tableau

at the kth iteration is denoted by

k) k)

L]

(2)

L g o et 2
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where initially

0)

A® ca, p@Day, (O L, 20 L, (3)
We define the following sets of indices
I={1,...,m} %)
J={1,...,n} (5)
i® . {1|4e€J and cj(k) < 0} (6)
b(k) b(k)
R a1 ]1e¢l and 2o Mintam—B—1 (7
3 BT W, WD
J &y > 0 3
Clearly, J(k) is the set of indices of potential incoming variables at step

k, while 'R}k) is the set of potential outgoing rows if column 3 1is chosen

to come in.

We can now define the set of candidate constraints at iteration k as

s o (4 | 1€ R;k) for some j € 3y, (8)

The set of non candidate constraints at iteration (k) 1is then obviously

r-s® | (9)

In this paper we will use the maximum objective change rule [3, 3] ,

which we will call the maximum z-change rule. To find it we calculate

(k) bik) Yy
(k
8 = Maximum (=c;")
(k) (10)
jor® m;k) Y 3

and determine the indices of the incoming variable J and outgoing variable {1

so that (1) holds and then




L) ) ()

(11)

Although a large amount of time is needed to determine the pivot giving the
maximum 2z-change, a net improvement in computational performance has been
found when it is used to solve moderate sized problems [5]. 1In this paper
we will show that still further improvements can be obtained by using the maxi-
mm 2z~-change rule in conjunction with the non candidate method.

By a partial pivot for a given choice of pivot row i and pivot colum |§,

we shall mean the calculation of the updated right hand sides b(k+1)

k)

from
b( . We will say that constraint i is violated if bik+1) < 0. Because of

the choice of pivot row 1 by the minimum ratio rule (7) and (10), it is clear
that no non candidate constraint at step k 1is ever violated at step k+l that

is,

(k+1)
by

>0 for iel-s® (12)

However a constraint which is a non candidate at step k could be violated at
step k+2, k+3,... .

In the non candidate method described in the next section, the simplex
tableau is updated at iteration k only for the constraints which are candidate
at iteration k. Since from 50 to 80 percent of all constraints in randomly
generated problems are non candidate, this results in considerable computational

savings, see Section 4 .

3. The Non Candidate Algorithm.

The flow chart for the non candidate simplex algorithm is shown in Figure 1.
The initialization steps of finding the set S(o) of candidate constraints and
the first maximum z-change pivot are given in boxes 1 and 2. They can be completed

by making one pass through the original data of the problem. Step 3 is the pivot




step which updates the rows of the simplex tableau restricted to the candidate
constraints. The rows corresponding to the non candidate constraints are not
updated. In box 4 a test is made to see if the current tableau is optimal; if
it is the algorithm stops; otherwise it continues.

In box 5 of Figure 1, the computer is instructed to make one pass through
the updated tableau at the kth step which is restricted to the rows in S(k);

(k)

during the data pass all non candidate constraints are removed from S

form the set S(k+1). During this data pass it is possible to also carry out

to

the instruction in box 6 of finding the maximum z-change pivot in the tableau

restricted to S(k+1).
In box 7, the computer is instructed to perform a partial pivot on b(k)
restricted to the set S(k+l); at the end of the partial pivot b(k+1) restricted

to the same set and hence x(k+l)

£ (+D)

will be available. As instructed in box 8,

the proposed solution, , 1s then substituted into the non candidate

(k)

constraints in the set I - S to see if any of them is violated. If any
such constraint is found to be violated, the computer is instructed in box 9
to update that constraint, and then go to box 5 to try again to find a maximum

z-pivot and a new x(k+1). This process is repeated until eventually a proposed

x(k+1) will be found which does not violate any non candidate constraint. When
this happens, the computer goes from box 8 to box 10 where k 1s updated; and
from there it goes back to box 3 to continue with the pivoting process.

Since the algorithm outlined is simply a reorganization of the standard
simplex method, all of the anti-cycling techniques, and finiteness proofs for

the latter hold for the non candidate method as well.

4. Computational Experience.

Table 1 gives the time comparison between the non candidate greatest

z-change method and the greatest z-change method in solving a series of 19
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randomly generated problems with two different densities of problem data.

Since the same entry criterion was used in each method the sequence of pivots
was identical in each. Hence the differences in solution times can be attributed
entirely to the relative efficiencies of the two methods. We found that the non
candidate method is more effective on problems with higher density, and also on
larger problems.

Table 2 gives a computational comparison of the non candidate method and
the ordinary simplex method on two sets of randomly genr ated problems. Note
that the number of iterations is smaller for the non candidate method due
to its greatest z-change entry criterion. The ratio of times for the two methods
are close to the ratio of number of iterations, which indicates that the savings
in time from not updating non candidate constraints approximates the additiomal
time needed for the greatest z-change calculations.

We have so far not tried to compare the two methods on actual problems
derived from real applications. However, the results so far on these randomly

generated problems are very encouraging.

5. Variations and Extensions of the Method.

Many variants of the method described in this paper have occurred to us

which we have not yet had time to test., We discuss some of them here.

(a) Connections with the GUB Method. The generalized upper bound (GUB) [6]
method handles constraints which are sums of variables outside of the tableau.
Usually such GUB constraints are also non candidate in our sense. When they are
candidate constraints and are actually chosen to be pivotal, they are not re-
introduced into the tableau as we do; instead special pivoting rules are added
to the simplex algorithm. Perhaps such special pivoting rules could be extended

to more general kinds of comstraints.

oo < s
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(b) Intermittent candidate checking. Instead of checking for candidate

constraints at each iteration as we do in box 5 of Figure 1, we could instead,
perform this check only once every sth iteration, s = 5, say, where the danger
is that a constraint could then become violated, and dual feasibility lost. This
could be corrected by performing some dual pivots. In this way the method could
become a kind of primal-dual algorithm. Only actual computational tests could
show whether, and for what values of s, this method would be good.

(c) Extension to large problems. Most large linear programming problems

are very sparse initially, but the tableau can fill in during the course of the
computation. Hence the non candidate method is a potentially valuable way of
keeping down the size of the working tableau, and/or the size of the basis inverse
matrix. The difficulty is in preforming the check for candidate constraints.

To this end we propose that the original data be stored om two tapes, once in

row order, and once in column order. Then the tape with row ordered data is

used to check for candidates, and the tape with column ordered data used to check
for incoming variables. We believe that the computations could be organized so

that both of these steps could be done efficiently. If the number of candidate

constraints is as small as we found in Table 2, then dramatic improvements in

the solution of large linear programs might be possible using this method.

6. Conclusions. ]
In this paper we have defined the concept of candidate and non candidate

constraints, and have demonstrated computationally that a modification of the

simplex method can be made to take advantage of the fact that non candidate

constraints need not be updated. The method assumes that a non candidate con-

bt 1ol b Ao A b e © 4k

straints at step k will remain so. If an error is made and such a constraint

becomes a candidate at a later step then the comstraint is updated and put back




into the tableau. Significant computational savings are possible by using this

method. Extensions of the method to find the solution to large problems were

sketched.
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Greatest z-change Greatest z-change
non candidate simplex Ratio of
Rows Columns Time (Secs) Time (Secs) Times
47 49 3.27 5.19 .63
62 130 14.71 19.57 .75
63 130 16.69 24.69 .67
83 94 17.48 22.67 .77
99 100 20.81 38.34 .54
100 99 13.59 19.68 .69
142 55 10.79 18.67 .58
150 180 66.68 134.25 .50
19 16 .20 .24 .87
20 20 .30 .35 .86
45 120 10.01 11.94 .84
59 92 10.87 12.62 .86
67 132 14.60 19.90 .73
71 40 3.75 5.20 .72
79 100 12.38 19,02 .65
92 74 12.24 18.99 .64
100 87 14.24 24,41 .58
125 70 19.18 33.93 .56
172 26 10.28 16.07 .64
Table 1

Comparison of greatest z-change non candidate

and simplex methods.

The sequence of

pivots was the same for both methods, so
that the ratio of times indicates the
relative efficiency of the two methods.




Non Candidate Method Simplex Method Ratios

{ Candidate
. Constraints
Ave.No. Ave Ave. |Ave.No.| Ave
Rows |Cols | Probs | Iter. No Y 4 Time | Iter. Time |Iter. | Times
20 100 3 25 13.33] .67 | 1.64 34 1.71 .74 .96
40 100 3 43 20.66] .52 | 6.31 78 8.82 | .55 .72
60 100 2 49.5 120.50} .34 | 9.56 90 17.42 .55 .55
80 100 1l 59 28 .35 | 16.98! 200 56.99 .30 .30
100 100 1 57 26 .26 | 21.11 95 36.55 | .60 .58
150 100 1 68 29 .19 | 42.94| 139 105.31 .49 .41
\}

Problem Set 1. Coefficients were generated at random with 507 positive,
10% negative, and 40% zero.

Non Candidate Method Simplex Method Ratios
Candidate
Ave.No. L:%z_c!ii& Ave Ave.No. Ave
Rows |Cols | Pxrobs | Iter. No % |Time Iter. | Time Iter. | Times
50 100 3 27 14.7 | .49 | 2.63 | 42.7 3.55 .63 .74
50 100 2 31 20 .40 | 5.25 | 57.5 9.20 .54 .57
90 130 1 58 25 .28 j20.22 ]| 71 31.75 .80 .67
130 80 1 48 23 .18 |24.89 | 84 48.74 .57 .51

Problem Set 2. Coefficients were generated at random with 65% positive,
152 negative, and 20% zero.

Table 2
Comparison of the greatest z-change non candidate method
and the simplex method with most negative reduced

cost entry criterionm.
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